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Abstract

The Blue Noise Mask (BNM) is a halftone screen t
pro-duces unstructured dot patterns and visually pl
ing images. The starting binary patterns or “seed” p
terns play a very important role in the mask genera
process. As we can show, the original filtering techni
used to generate this pattern reaches a lower limit in te
of perceived mean square error (MSE). A new algorit
is proposed to break this limit. This new algorithm
based on a model of electrostatic forces between cha
By locally enforcing this vector process at the end
filtering, more visually pleasing patterns are genera
Another observation is that this process eventually c
verges to a very structured dot pattern. This leads u
another related and important discussion regarding
degree of randomness that is optimal in Blue No
Masks. At one extreme, we have white noise, at ano
extreme, we have a highly structured pattern. The w
noise pattern is visually annoying, but the highly str
tured pattern is a poor “seed” for adding or subtrac
minority pixels for the construction of neighboring gr
levels in a dither matrix. What pattern between wh
noise and structured patterns constitutes an optimal
noise pattern? A series of patterns is presented and
power spectra is analyzed. A discussion of optima
for using these individual patterns as “seed” pattern
also presented.

Introduction

Stochastic screening has been an active research fie
recent years. Blue noise halftone screens were firs
veloped by Mitsa and Parker1 in 1991. Work on filtering
and constructing BNMs continues to be an active a
(Yao & Parker,2 Ulichney.4 The BNM combines the blu
noise characteristic of error diffusion3 and the fast spee
of ordered dither.

Briefly, the BNM can be constructed one level a
time from some intermediate starting binary pattern
“seed”. At each level, filter is used to identify and elim
nate low frequency structures (large “clumps”) inco
patible with the desired blue noise power spectrum.

In his Ph.D. thesis,3 Yao gave a detailed mathema
cal analysis of the BNM construction based on a hum
visual model, which provides insights to the filtering p
cess and also prescribes the locations of the dots
will result in a binary pattern of minimum perceived 
ror when swapped. The analysis of the filtering techni
put a lower bound on the lowest MSE we can achi
assuming a human visual system based filter is use
measure perceived MSE. As Yao pointed out, the dif
ence between the local filtered output of the largest w
clump and the largest black clump must be greater 
a certain value T in order for the MSE to be further 
duced. T is given by:

                  T = 1/(4 * π * σ2) (1)

whereas σ is the sigma of the adaptive filter based o
human visual model.

The binary “seed” pattern is also generated us
this same filtering technique, where the starting pat
can be a white noise random pattern. Therefore, we 
the same MSE limit problem. In the following sectio
we will present a new algorithm to break this limit. B
locally enforcing a vector process at the end of filteri
we are able to get generate more visually pleasing
nary patterns.

New Algorithm for Modifying
Binary Patterns

This new algorithm is based on the model of elec
static force between charges.

Point charges of same polarity will repel each ot
while charges of different polarity will attract each oth
Therefore, in case of a binary pattern whose pixel 
ues are either 1 or 0, if we assume “+” polarity for 
the minority pixels, then there will be interactive for
between all the pixels. If we let those minority pixe
move freely under the net electrostatic force on th
from nearby pixel charges, we should expect a ne
homogeneous distribution of those minority pixels af
certain iterations of movement. Since every pixel 
some force acting on them, we should set a thres
such that only when the net force on a pixel surpa
the threshold value, will that pixel move in the directi
which would minimize the net forces on that minor
“charge”. Remember that the starting pattern for this n
algorithm is the one we obtain from the filtering pr
cess, which is already free of clumps. Thus if we p
the histogram of the net force (either in horizontal 
rection or vertical direction) on every minority pixel, w
will get a distribution that is highly peaked near 0. The
fore, we can assume the mean value of net force on
ery minority pixel to be 0. In this case, we calculate 
force on each minority pixels from their individual neig
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ask
borhoods and the standard deviation (SD) of these fo
then we set the threshold (T) value as:

        T = V * SD (2)

V is a variable that will be adaptive to the gray level a
iteration number.

As binary patterns are 2-D, we will do this for
calculation and pixel movement in horizontal and ve
cal direction (or X and Y direction) respectively.

The steps of this new algorithm are outlined as follow

1. Set the neighborhood size and initial V value 
cording to the gray level of the pattern. The ma
mum value of V and increments should also be 

2. Make a copy of the starting pattern 1 and den
this as pattern 2.

3. For pattern 1, calculate the net force on each mi
ity pixel from their neighborhood in X and Y dire
tion, (fx)j, (fy)j, j represents each minority pixel.

4. Calculate the standard deviation of these two gro
of forces and set the threshold Tx and Ty.

5. For every minority pixel j of pattern 1, compare t
absolute value of (fx)j against Tx, if it is greater than
Tx, move the corresponding pixel of pattern 2 o
pixel in the direction based on the sign of (fx)j. Oth-
erwise, make no movement. The same procedu
done in Y direction for that same pixel.

6. After this comparing and moving is done for eve
minority pixel in pattern 1, we obtain a new patte
2 that is different from pattern 1 because of the p
movement. The MSE of pattern 1 and pattern 2
compared. If MSE of pattern 2 is less than tha
pattern 1, pattern 2 is accepted and used to up
pattern 1, and another iteration is called starting
step 2. Otherwise, V is increase by certain amo
If V is less than the maximum value set in step 1
back to step 2. Otherwise, the process is termina

A different force-relaxation model for adaptiv
halftoning of images was proposed by Eschbach 
Hauck.5

Experimental Results

To illustrate the procedure, we apply the filtering te
nique of Yao & Parker2 to a random white noise patte
(P1) of gray level 245, where the sigma for the filte
2.4 in this case. Figure 1 shows the filter-weighted M
drop vs. iteration number and Figure 2 shows the dif
ence between the largest white clump and the lar
black clump (DWB) for each iteration. As we can s
since we start from a white noise pattern, the DWB
quite large, so the MSE keeps going down in each 
ation. After a certain number of iterations, the DWB a
proaches the lower bound we set in Equation 1, in 
case approximately 0.0137, then the filter can no lon
improve the binary pattern. Figure 3(a) shows the
nary pattern (P2) obtained from the filtering process w
MSE value of 0.263.

We then use this pattern as the starting pattern
our new algorithm. We define the neighborhood as
152—Recent Progress in Digital Halftoning II
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by 13 and set starting value of V as 1.5. Figure 3(b) sh
the binary pattern (p3) after just 5 iterations with M
of 0.165.

It is quite obvious that by locally enforcing our ne
vector process, we can further reduce the perceive
ror and get progressively more ordered dot patterns

Figure 1. MSE drio vs. iteration in filtering process.

Figure 2. Difference between the largest white clump and
largest black clump in the filtering process

Discussion

We note that our new algorithm does converge after 
ther iterations. Figure 3(c) shows the final pattern (
obtained when the new algorithm converges after 7
erations. The final MSE is 0.087. As we can see, this
very structured pattern.

One thing we should keep in mind is that the p
pose of this new algorithm is not just to get a visua
pleasing binary pattern but a visually pleasing “se
from which a halftone mask will be generated lat
Therefore, the decision which pattern to choose as
“seed” should be based on their performance in m
generation.
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4).
Figure 3. (a) White Noise Pattern (P1) Figure 3. (b) Pattern after filtering Process (P2)

Figure 3. (c) Pattern after 5 iterations of force-relaxation (P3). Figure 3. (d) Pattern after 75 iterations of force-relaxation (P
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Obviously, a white noise pattern cannot be a ca
date. However, we also find out that the highly str
tured pattern is also a poor candidate. If we use it as
“seed”, those binary patterns with gray level in its nei
borhood will be very visually annoying due to notic
able disruption of the semi-regular patterns establis
by the “seed” pattern. This leads to the question: W
pattern between white noise and structured patterns
stitutes an optimal blue noise pattern?

Figure 4 shows the power spectra of all the patte
we presented above. P1 has the typical white noise c
acteristic, P2 and P3 have the typical blue noise cha
teristic, P4 has a very high peak at the principal 
quency. If we plot the power spectrum of all interme
ate patterns, we could see the trend that starts from w
noise, generally moves into blue noise, and end up 
a concentration of energy around the principal freque
of the gray level. Therefore, in carrying out our new 
gorithm, we should set a criterion that will enable us
terminate the process once an excessive concentr
of energy is reached. Current research is investiga
in this area.
di-
c-
the
h-
-
ed
at
on-

ns
ar-

ac-
e-
i-
hite
ith
cy
l-
to

Figure 4. Radially averaged power spectrum of binary pa
terns
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Conclusion

In this paper, we proposed a new algorithm based
electrostatics model, which if combined with current 
tering technique, will generate visually pleasing b
noise pattern to be used as a “seed” in stochastic s
design.
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